Strategies to design pyrazolyl urea derivatives for p38 kinase inhibition: a molecular modeling study
نویسندگان
چکیده
The p38 protein kinase is a serine-threonine mitogen activated protein kinase, which plays an important role in inflammation and arthritis. A combined study of 3D-QSAR and molecular docking has been undertaken to explore the structural insights of pyrazolyl urea p38 kinase inhibitors. The 3D-QSAR studies involved comparative molecular field analysis (CoMFA) and comparative molecular similarity indices (CoMSIA). The best CoMFA model was derived from the atom fit alignment with a cross-validated r (2 )(q (2)) value of 0.516 and conventional r (2) of 0.950, while the best CoMSIA model yielded a q (2) of 0.455 and r (2) of 0.979 (39 molecules in training set, 9 molecules in test set). The CoMFA and CoMSIA contour maps generated from these models provided inklings about the influence of interactive molecular fields in the space on the activity. GOLD, Sybyl (FlexX) and AutoDock docking protocols were exercised to explore the protein-inhibitor interactions. The integration of 3D-QSAR and molecular docking has proffered essential structural features of pyrazolyl urea inhibitors and also strategies to design new potent analogues with enhanced activity.
منابع مشابه
Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.
Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...
متن کاملComputational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.
Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...
متن کاملDesign, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...
متن کاملDesign, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents
In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computer-aided molecular design
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2007